Category Archives: Ecuador

Latitudinal Diversity: my theory

IMG_0539

Growing up in England I was fond of woods, but when I went to live in a cloud forest (which is a tropical rainforest in the mountains) in central America, three things stood out as massively different to the forests I knew in England.

  1. There was a huge variety of plants. In the UK, most woods have the same few trees and plants repeated – oaks, birches, sycamores and ash for the trees; bracken and brambles at ground level. In the cloud forest, almost no tree or ground level plant was repeated, to put it technically, it had a greater species diversity.
  2. The ecosystem was far more interactive than I was used to. Trees were laden with epiphytes, and there was barely a leaf without fungus, insects or a virus. It seemed that almost every plant surface had something else growing on it. In the UK, there are only occasional galls and nests, the odd bit of moss, and epiphytic plants are rare.
  3. The variety in colour, shape and habit of the cloud forest plants was huge, at every turn I uncovered new leaf shapes and colours, whereas in the UK there are mostly green leaves growing in a few different patterns. (Note that I am talking about native woods in the UK here, we import many different garden plants from other countries and those have a greater variety of shapes and colours)

2413

The differences were so immense and fascinating, I started researching as soon as I was able to.

What I discovered is that there is higher diversity of species and greater number of species (species richness) the closer to the equator you get. This is known as the latitudinal diversity gradient.

Science hasn’t quite explained it yet, but there are theories, I also have my own which I want to share. I’ve not come across anyone suggesting the same explanation, although the chances someone has, somewhere.

IMG_2401

An aroid flower in Ecuador

The Facts

  • The greatest number of species for the major taxa – flowering plants, ferns, mammals, birds, reptiles, fresh water fish, amphibians, insects and snails – are in the tropics.
  • Species diversity and richness increase as you travel towards the equator.

For example: The 1950s doc ‘Evolution in the Tropics’ by Dobzhansky stated that Greenland had 56 species of birds, New York 195, Guatemala 469, Panama 1100 and Colombia 1395.

  • While tropical moist forests have the greatest diversity, even tropical savannahs and grasslands are more diverse than similar landscapes in temperate areas. This is especially important, because it suggests that the difference is not just due to terrain, but also latitude.
  • Recent research suggests that there are more fungi species in the tropics too. There isn’t enough known about diversity of bacteria species across the globe.
IMG_1454

A pink-leaved climber growing within a green-leaved plant.

The Theories

There are a number of theories. They include factors such as the Ice Age, which affected the poles greatly and the tropics less so; the size of the tropics compared to other areas; and the higher levels of predation so that the fight to survive drives evolution. All of the theories are contested, a few can explain part of the difference, but not all. Some are circular, eg. there is greater species diversity, because there are more competitors for food sources.

For more detail try A Neotropical Companion by Kricher (where much of my info comes from) or Wikipedia which has a number of other theories too.

IMG_3408

My Theory – it’s all about the small things

One notable difference about the equator is that there is little change in light and temperature. Where as in the UK the nights are very long in the winter and short in the summer, in Central America it gets dark at 5pm all year round. Temperatures are also more stable; slightly closer to the poles, the more temperatures can fluctuate from minus degrees in the winter to scorching heat in the summer. In the tropics, it’s pretty much hot all year round – or in high up cloud forests it’s consistently warm.

This lack of change makes some difference to larger animals and plants since they don’t need to go into dormancy they can grow and reproduce all year round. But their life cycles are still fairly slow, reproducing once a year or every few years. However, this difference is far more significant when it comes to very small organisms because their lifecycles are so much shorter, and they are more affected by changes in temperature and light. Those quick lifecycles mean they can mutate, adapt and evolve at far greater rates too.

So I believe that is why there is greater species richness, abundance and diversity of small organisms at the equator, but the difference is not so pronounced in larger organisms, so what else is a factor?

I believe that it is the species diversity of smaller organisms that directly causes the diversity in larger organisms through parasitism and symbiosis. Parasitism drives evolution and symbiosis aids survival.

IMG_0734

First, some terminology

Parasitism

Parasites are usually insects, fungi, small plants or bacteria and are harmful to larger plants and animals, taking what they need without concern for the host. Organisms often evolve to protect themselves from threat. Parasites are a threat. The more threats, and the more varied the threats, the more animals and plants need to evolve to fight them. This is a common, but as yet unproved theory.

For example: If a plant has a mutation of hairy leaves that deter insects, then in an environment with many insects, that mutation is more likely to lead to the survival of that plant and the proliferation of the hairy-leaf gene.

Symbiosis

Symbiosis between insects and fungi?

Symbiosis

Symbiotic relationships tend to drive specialisation and help organisms to survive. Because the rainforest is so crowded, there is a constant battle for nutrients, space and light, so forming an alliance is beneficial. Through the generations, that alliance tends to become tighter and more exclusive. Symbiosis can be seen between many animals, plants, fungi and bacteria.

For example:  Ants forming a protective army inside an acacia tree and fighting off any animal that comes to eat it. Or aroid flowers that are only pollinated by one type of fly, so they evolve to give off a scent that attracts that specific fly (often rotting meat). In a crowded rainforest, if all plants targeted all insects, then many plants would get missed and never pollinated. Forming a symbiotic relationship is like putting an address on a letter, instead of flinging up in the air and hoping someone reads it.

The Small Things

Fungi

Fungus in Ecuador

The ideal conditions for fungi to grow are warm moist ones. In the UK fungi live in the ground unseen, all year round. Then in autumn they produce fruiting bodies – ie the mushrooms that enable them to reproduce – that’s because the soil has warmed over the summer and there’s plenty of rain. In the tropics, the soil never cools, and humidity is constant, this means the reproductive phase can also continue all year round.

 

 

 

This slideshow requires JavaScript.

 

Why fungi are important to larger organisms – fungi can be both beneficial and harmful to plants. Some fungi form a symbiotic relationship with them, growing on their roots and enabling them to take in nutrients that the plants would struggle to access on their own – these are known as mycorrhizal fungi. This harmoniuos relationship can take centuries to form. This is one reason why it’s so difficult to regrow plants on an area that has been de-forested, because the mycorrhizal fungi are no longer there, and the plants can’t access nutrients without them.

Fungi can also be parasitic and break down healthy wood. That’s what fungus does essentially, breaks stuff down, it’s a decomposer – that’s good when it’s breaking down dead matter to release the nutrients, but bad when it breaks down living material.

Bacteria

IMG_1502

Either bacteria or insect galls

Like fungus, the ideal conditions for bacteria to grow is warmth and moisture, they are also sensitive to light changes. So, the equator, and especially the rainforest at the equator, has perfect conditions.

Why is bacteria important to larger organisms – like fungi, bacteria can be both good and bad for plants. Some bacteria work in a similar way to fungi, attaching to roots and breaking down nutrients (specifically nitrogen) into a form the plants can absorb. And, like fungi, bacteria can be harmful, causing diseases.

Insects

 

 

 

Insects also like warmth and wet. We know in the UK if there is a warm summer followed by a lot of rain, then the insects will increase. In the tropics, those are the constant conditions. Even in drier areas, the consistency of temperature is enough to maintain insect populations.

Why insects are important to larger organisms – insects can also be a blessing or a burden to plants. Leaf cutter ants will ravage a tree, defoliating it, but as described above, ants can protect trees too. The photo above shows a number of insect galls on plants, where parasitic insects alter how a plant grows to create their habitats.

 

 

 

 

 

This slideshow requires JavaScript.

Conclusion

To put it simply…

According to my theory,

  • Smaller organisms thrive in stable environments where light and temperatures are fairly constant all year round.
  • The resulting high numbers and quick life cycle leads to greater opportunities for them to mutate and evolve.
  • Smaller organisms affect the number and diversity of larger organisms through parasitism and symbiosis.
  • Parasitism drives species richness, by forcing larger organisms to evolve to survive. Symbiosis aids survival and promotes specialisation.
  • So the numbers and diversity of larger organisms increases.

 

1

Mosses and lichen on a branch

 

Advertisements

Orchids in a Cloud Forest in Ecuador

Maxillaria

Maxillaria

Maxillaria

Maxillaria

 

Chondrorhychna chestertonii

Chondrorhychna chestertonii

Chondrorhychna chestertonii

Chondrorhychna chestertonii

Masdevallia

Masdevallia

Masdevallia

Masdevallia

Stelis argentata

Stelis argentata

Lycomormium ecuadorense

Lycomormium ecuadorense

Epidendrum peraltum

Epidendrum peraltum

Cyrtochilum

Cyrtochilum

???????????????????????????????

Epidendrum

 

Dracula Orchids

Dracula

Dracula

Dracula

Dracula

Tiny Orchids

orchids in Ecuador cloud forest  tiny orchid

Pleurothallis

Pleurothallis

Pleurothallis

Pleurothallis

Lepanthes

Lepanthes

Lepanthes deformis

Lepanthes deformis

Lepanthes deformis

Lepanthes deformis

Plant Galls in a Cloud Forest in Ecuador

gall

On a recent trip to an Ecuadorian cloud forest I was fascinated by the large numbers of diseases and deformities that riddle the plants. Many of these take the form of plants galls.

Galls are abnormal tissue growth on the surface of plants caused by parasites, such as fungi, nematodes, insects, mites or bacteria, the galls are tailored as the perfect place for the parasitic organism to live in. In the past I’ve looked for and found plant galls in England, but it seemed that they were more numerous and varied in Ecuador. I believe there are three reasons for this, all related to Latitudinal Diversity, which is the phenomenon whereby  animal and plant species diversity increases the closer you get to the equator, it applies most notably to rainforests.

  1. With a wider variety of plant hosts, there will be a wider variety of parasites to take advantage of them
  2. A greater number and wider variety of insects leads to more varied insect galls
  3. It is not known for sure that there are more species of fungi and bacteria close to the equator, but it is likely since fungi and bacteria both benefit from a stable environment where light, temperature and humidity are fairly constant, all of which is more true at the tropics than further North or South

What makes galls particularly bizarre, is that these growths are not attachments to the plant, but the plant itself, made to alter its normal growing behaviour in order to benefit its parasite host. Although it is not clear how insects cause this change, bacteria is known to insert its own DNA into the plant cells to alter behaviour. (example here) Insect larvae have been found actually inside the cells of the plant, which might suggest similar interference. It is thought that one wasp (Cynipinae) works in conjunction with a virus (viruses reproduce by inserting their own DNA into the DNA of a host) that lives in the wasps saliva and gets into the plant as the wasp eats it. This is an example of mutualism, since the insect benefits from the virus by getting to make the gall and the virus benefits by getting to reproduce.

Insect and mite galls

These galls are formed by the insect or mite either feeding or laying eggs. When adults lay their larvae on a leaf, excreta or saliva from the insect affects the cambium and causes it to grow differently (more detail above). The larva then grows inside the gall, feeding on the gall itself, eventually eating its way out and escaping. Sometimes the insect control over the plant tissue extends beyond the gall and starches and sugars are drawn in from elsewhere in the plant to increase the food store for the insect.

Insect and mite galls in Ecuador

Insect gall on tree trunk

Insect gall on tree trunk

Underside and Upperside of Leaf

Underside and Upperside of Leaf

Insect galls

Insect galls

Insect galls on Columnea

Insect galls on Columnea

Insect galls showing holes of escaped insects

Insect galls showing holes of escaped insects

Insect galls

Non Gall Insect Invasions

Sometimes I found insects that had taken over leaves, or even entire plants to make a home in. These were not galls, because while leaves were often distorted, the cells were not expanded or changed, but they were still quite bizarre to see.

Ants Forming a Home in a Plant

Ants Forming a Home in a Plant

Wasp Swarm onto Leaf

Wasp Swarm onto Leaf

Insect Colonise a Leaf

Insect Colonise a Leaf

Note: for other insect photos I took in Ecuador, see here

Other Galls

Although some galls I was clearly able to determine as being caused by insects or mites because I could find the animal or see its exit point, others I am just not sure about. The following are those less easy to decipher galls that may be caused by fungi or bacteria.

Leaf Spot Galls

Leaf Spot Gall

Leaf Spot Gall on Decayed Leaf

Leaf Spot Gall on Decayed Leaf

Leaf Distortion due to Gall

Leaf Distortion

The plant in the next photo is a puzzle, the fluffy looking outgrowths at the base of the leaves (and in between) may be a normal part of the plant, perhaps even be the flowers, but they also look similar to the growths in the above picture, which are definitely galls.

Plant Galls or Plant?

Plant Galls or Plant?

This final gall, I believe, is caused by insects because I think it is possible to see them, the black mass at the heart of the distortion.

Severe Leaf Distortion

Severe Leaf Distortion

Close up of Leaf Distortion

Close up of Leaf Distortion

Some interesting and useful websites on plant galls:

Some books I used for reference:

  • British Plant Galls – M. Redfern and P. Shirley
  • The Kingdom Fungi – S. L. Stephenson
  • Parasite Rex – C. Zimmer

Cloud Forest in Ecuador

Busy forest life

Busy forest life

Note: this blog is an introduction and will deal with the forest as a whole, the general impression of it, I hope to write future blogs about specific aspects, such as orchids, fungi, diseases etc, and here is a separate blog page I posted about insects and animals.

I took a recent trip to a cloud forest in the mountains of Ecuador, working at a research centre called Los Cedros. While there I was able to take many hikes out into the forest, taking photos and trying to understand how the forest worked as a system.

Cloud inside the forest

Cloud inside the forest

A cloud forest is a type of rainforest, but at a higher altitude and therefore cooler and with a frequent covering of cloud. During the day, the cloud could be seen moving through the forest, like mist, and up and down the mountain.

Cloud moving down the mountain

Cloud moving down the mountain

The plants in a cloud forest and a rain forest are similar, with the same high species diversity, the same density of plants and the same complex interaction between plants, animals and fungi.

Trees

Aerial roots hang down from a tree (3 vertical white lines)

Aerial roots hang down from a tree (3 vertical white lines)

The majority of the trees were very tall, very thin, with no branching until reaching the top of the canopy, this is typical of the rainforest. The forest was always dark because the canopy was so dense and so leaves were concentrated as high up as possible where they could reach the light (what looks like white sky behind the trees is actually misty cloud between them). Lianas and aerial roots hung down between the trees.

Tree ferns with a backdrop of mist

Tree ferns with a backdrop of mist

Among the trees were tree ferns, palms, strangler figs and walking trees.

Epiphytes and Climbers

Epiphytes

Epiphytes

Aroid in tree top

Wall of climbers next to a path

Wall of climbers next to a path

Trees were covered in plants, some were climbers, such as Philodendron, others were epiphytes that grew around the trunks of trees, using moss as an anchor, these were mostly orchids, bromeliads and ferns. Epiphytes grow high in order to use the increased light in the canopy layer, they have a number of methods to gain nutrients and water, normally provided by the soil. For example, bromeliads have stiff leaves that form a cup at the centre, water collects in this cup and insects defecate and drown in it, leading to a release of nutrients.

Bromeliads

Bromeliads

Orchid in tree

Orchid in tree

Mosses and Lichens

Moss, lichens and epiphytic ferns

Moss, lichens and epiphytic ferns covering tree branches

Mosses were abundant, covering leaves and trunks, they were virulent and colourful. Some more detail on mosses is here.

Moss and lichen

Moss and lichen

Moss growing on leaf

Moss growing on leaf and stem

Ground Cover

Leafy ground cover

Leafy ground cover

Mostly the forest floor was covered in leaves, thick plasticky leaves, a little like cherry laurel. The soil in rainforest is thin and low in nutrients, this is because there are so many organisms with cunning ways of exploiting death, snatching plant and animals corpses before they reach the soil. There is also very little light on the forest floor, perhaps as low as 2%, however, there were some plants that managed to grow and thrive.

Kohleria villosa

Kohleria villosa

Blechnum fern

Blechnum fern

Stellaria media (chickweed) and Plantago major (greater plantain) are both familiar weeds in England that have been introduced to the area, presumably by accident, and I found them growing wherever the forest had been cut back.

Plantago major (greater plantain)

Plantago major (greater plantain)

Diseases

Partially decayed, but still attached leaf

Partially decayed, but still attached leaf

Warm, humid conditions are ideal for many diseases, add to that the large number of insects and parasitic plants and fungi, meant that most plants were damaged extensively. Non native trees, such as citrus, were the most affected, so presumably the native plants have built up some resistance, but the forest was still filled with diseases and decay.

Fresh new growth on a diseased tree

Fresh new growth on a diseased fruit tree

Diseased orchid leaf

Diseased orchid leaf

Dilapidated leaves

Dilapidated leaves